Some of The Rules for breeding Sebrights

© Laurie Smart 6/2016 REV 9

These very intelligent birds were created some 200 years ago. Over the years Sebrights have developed some of their own ways of doing things, but little has changed in the standards over the years or in the different countries where they are shown. I have written these Rules to help anyone who breeds Sebrights and particularly new comers. A major part of keeping and breeding poultry is to improve the quality each year, and the excitement of having culls that you would have loved to have as breeders some three years ago.

Throughout these Rules, I have referred to dominant genes and recessive genes following the rules or principles of Mendelism. I have not attempted to label these genes with letters, does that really matter when selecting birds for mating? You can tell if a feature like a short back is dominant if both the mated male and female have short backs and the progeny are a mixture of both short and long backs then the long back is recessive. The importance of this is that if a trait is a recessive gene then when it is established in a line of birds for good or bad it is locked into the line and carried from one generation to the next generation. For example, ‘wry’ tails where the tail is held to one side (awry) is a recessive characteristic and once established in both sexes of a line it is impossible to breed it out without an out cross. Other recessive features include feathers on the legs and feet, twisted or bent breast bones, the odd white feathers in the wings or tail, curved and roached backs, bent toes, long legs, long back, comb rising at the back of the head, straight comb, a comb with a single leader, or ingrown leader, combs with side sprigs, some forms of crooked toes, to list just some of them. Birds with bright yellow legs have the yellow genes in both of the skin layers on their legs and are recessive to white legs. Be aware that some recessive traits can be desired and other ones a curse.

Look for the recessive features and decide if it is desirable or not and select your breeders accordingly. For example, very dark eyes in Sebrights are a desirable recessive trait, and once established it is easy to maintain because when the dominant red eyes gene is missing from the breeding pen, there exist only the dark eye genes. Dominant traits such as drooped or low wings are easy to visually pick and although there may be the odd bird where atavism occurs in the next generation (ie they resemble a remote ancestor rather than their parents) and they hold their wings high (the recessive gene) they can be culled and with some luck the culls with the
recessive gene can be reduced and over time can be eliminated. In other words the dominant trait can hide the unwanted recessive gene and are difficult to establish as the only gene of any feature in a line of birds. When breeding you just can’t ignore genetics and be an efficient breeder.

To reiterate on these ideas the classic punnets that follow is a graphic way to show the same ideas.

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Dd</td>
<td>Dd</td>
</tr>
</tbody>
</table>

If “D” represents the dominant gene and “d” represents the recessive gene then when a bird has a pair of genes of DD or Dd then the dominant gene or trait will prevail. The recessive trait will only be displayed when a bird has two recessive genes dd

A mating between two birds when one has a double dose of dominant DD and the other has double dose of recessive genes dd all the resulting progeny will be of the dominant trait carrying the recessive gene (Dd).

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Dd</td>
<td>dd</td>
</tr>
</tbody>
</table>

If one of the above progeny (Dd) is mated to the bird with the recessive trait (dd) bird then half of the young will be of the recessive type (dd) and the other half will have the dominant trait (Dd)

If both of the birds mated have the recessive trait (dd) there is no dominant gene so all the progeny will all be of the recessive trait. Alternatively if both have the dominant trait (DD) all the progeny will have only the dominant trait and the recessive gene has disappeared.

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>DD</td>
<td>Dd</td>
</tr>
</tbody>
</table>

When both of the mated birds each have the same dominant trait (eg short back) and but also have the recessive gene (long back) then about one in four (¼) of the progeny will show the recessive trait (long back) and the rest will show the dominant trait (short back).

So if you mate two birds that look as though they have the same trait and some of the progeny have a different trait then that new trait is recessive.

When considering more than one trait then multiply by 4 for the number of possible outcomes of each extra trait. e.g two independent traits produces 16 possible results, and three traits produces 64 possible results.

Take a good deal of the guess work out of breeding by using these genetic ideas as to what will be the likely results of any particular pair of birds that have been mated.
Selecting the birds to make up a pen is always a choice from only what is available, and what can be incorporated in future pairs. However if the trait or gene that you are after is missing and your flock does not have it, then an ‘import’ is necessary to incorporate that trait, whether it is recessive or dominant. It can be so frustrating knowing what you want and not achieving a fruitful outcome, you seem to get one trait right only to find that another problem crops up. Sometimes a fault can be rectified by selecting a bird that is as close as possible and persevering over the years.

After breeding Sebrights for some thirty years, I believe the following points to be true. I have written these notes to pass on the observations that I have made to help you, as they are not easily found in poultry literature. It is one thing to read about selection criteria and another thing altogether to apply them to the birds in front of you, but keep a close eye to details and success is yours to have. Progress can be slow and sometimes backwards but persevere. There is a great shortage of people who are prepared to preserver with the challenge of breeding Sebrights.

FERTILITY

1. **Select for fertility** in males and good layers from females, because without fertile eggs there is no next generation! Birds that are not producing fertile eggs are just not worth their keep except as a decoration in the front yard. A birds good looks is no certainty that it is a good breeder that will produce a winner, the bird could be infertile.

2. **Selecting for resistance to diseases** such as for Mareks will become automatic without inoculation because the disease resistant birds will be the only survivors left to breed with during the next season. It does no one a favour breeding birds that produce young that are susceptible to diseases because the adults have been inoculated. I have been told that Stalosan F is a good coccidiostat.

3. You can expect a **good layer** will lay about three eggs a week during the four month season for about 4 or 5 years after that she will stop laying because she has exhausted her supply of egg follicles that she had when she was hatched.

4. **The dark colour of the hens comb** makes it impossible to tell if she is laying by the colour of her comb.
5. **The hens mostly lay late in the season** i.e. late spring - early summer when other breeds have finished, i.e. November –January and usually finished by the end of February. This is OK because the sebrights can mature quickly enough to show mid winter. I have been told that Columbian Wyandotte bantams have a similar time line for reproduction. **Standard sized birds hatched in February will lay in 5 months in July** so can be set along side the Sebrights.

6. I use an incubator to set the eggs whenever they are laid but **the cocks are usually infertile in winter**. The ability of a hen to be an effective reproducer is related to the number of eggs she lays, and good laying is genetically reproduced from mother to daughter. **The hatchability of eggs** is usually about one third i.e. for every 100 eggs about 30 to 40 will hatch, of those only one or two will be worthwhile. With those numbers it is no wonder that Sebright breeders are reluctant to sell eggs because of the fear of being abused for the poor hatches. Maybe this is all part of and parcel of the hen feathering of the males? Mind you, a Sebright hen hatched six out of the 10 eggs set under her in April.

7. Feeding a good **‘breeders rations’** and the correct temperature in the incubator are crucial for hatching success. It can also be said that good ration is important for young birds to develop good reproduction organs as they grow.

8. **Older hens will not accept females as newcomers** into their pen, so hens cannot be shifted around nilly willy. They behave the same way as bantam OEG and will never completely accept a new addition into the fold. So raise the pullets together from a young age. Or have lots of pens and cocks to set up individual mating pens. It is usually ok to move cocks about from pen to pen. It has been shown by Clive Carefoot that **the sperm of rosecomb cocks remains viable for only 5 days** (compared to 10 days for birds with straight combs). This is particularly so if they have a lot of workings on the comb and in winter. Where as moving the hens can put them off the lay.

9. It goes without saying, **always keep a least two cocks**, one may fall off the perch or be infertile. **The infertility may not be the cocks fault the hen can refuse to mate** with a particular cock bird or just not capable of producing the fertile eggs with any cock bird even a proven breeder. Some cocks become infertile after two years.

10. **Sometimes the hen will just not mate with a particular cock**, changing cocks or single mating may be the solution or a complete change of venue may suit her and start a new romance. I have a set of twelve double show pens with perches that allow the birds to be housed in pairs and trios or even up to 6 birds without the litter becoming gluggy. See rule 77 page 16.
11. **Old hens will beat up young males** so care needs to be exercised when making such a mating. You may need to establish the young cock in a different pen and then move the old hen taking the risk that she may stop laying.

12. **Always label each egg using a 5B grey lead pencil** so you can follow the fertility of each pen and know where the successful and failures come from. Most marking pens have toxic fluids in the ink that can kill the embryo.

13. I usually set the Sebright eggs weekly. But I have had no problems with setting 10 day old eggs!

14. The Hens that do not produce young are let out to free range and fend for themselves. Some of these infertile hens loose in the yard go clucky and make excellent mothers. The trick is to find their nest of eggs which has triggered the cluckyness and set fertile eggs under them and to protect them from foxes. Around the house garden is a good place as they don’t scratch up many plants and can be found easily. The chicks they raise appear to be better than artificially raised chicks and make great entertainment for the family.

![This is the way to go forward.](image1)

![Pay attention kids.](image2)

TYPE

Shape makes the breed, colour distinguishes the variety select the best available for type this includes the following

15. **Stance**- a cocky, cobby bird that look like fan tail pigeon with a stance that has the head held back with the chest pushed out that looks like an ‘S’ shape. Probably a recessive trait, I haven’t got any birds that do not do it now, but I once had them.

16. **Tail**- The males should have hen feathers i.e. no sickle feathers in the tail and no hackle feathers (a dominant gene). Sebrights are always fanning their tail, probably
because they are easily excited, males more so than females. The tail is held at about 110deg to the back (the standard says held high). Some males will pull their tail closer to a squirrel tail position when with females or when in front of strangers. Lifting the tail from the horizontal is a recessive gene or maybe several genes interacting for the different angles.

17. **Wings** - Sebrights should have large drooping wings carried low. This is caused by dominant genes, where as tightly held wings held up is caused by recessive genes. This can be produced from drooping wing parents every now and again when each of the parents carry the uplifting recessive gene. There are four levels of wing carriage ranging from very high, to high, then low and very low. It is possible that two or more genes are interacting.

18. Split wings where there is a large gap between the primaries and secondary feathers. This is a recessive gene and is difficult to breed out.

19. **full sweep of back** - a good flourish of coverts or cushion at the base of the tail is needed to create a sweep up from the back to the tail feathers, this is because it makes the back look shorter in a desirable ‘U’ shape outline. There is a dominant gene that creates this feature. There seems to be three parts of the back that have their own genes they are the shoulders, the middle, and the cushion.

20. **flat back** this also helps to visually create a short back, (a dominant gene) so if a curved back exist as a recessive gene in one of birds in a pair it can appear in up to 50% of the young. Another recessive gene causes a raised spine at the fore of the back.
21. **Short back** of less than a hand width or 100mm or 4” (a dominant gene) but if you **only** have long backed birds you will not breed short back birds. This is because a long back is recessive and it is fixed in the progeny if both parents have a long back. A pair of birds that each have short backs can produce long back in their offspring when the recessive components of the two parent’s genes come together. Sometimes it may be necessary to use a long back bird with a short back bird to get some short back birds of both sexes. Short backed birds seem to be more likely to have cow hocked legs.

22. **Wide neck hackle feathers** forming a wide skirt at the back along with the head held back to form the ‘S’ shaped front of the bird creates a vision of a desirable ‘U’ back line and a shorter back.

23. **Short legs, and thighs** set “well apart” (I think this is a dominant gene) so if only one of a mated pair has short legs they will produce about 50% with short legs that carry the gene for long legs.

24. **Dark eyes**, the standard says “as dark as possible”, this is a recessive gene so if both parents have dark eyes it is fixed in future generations. This is enhanced by a dark cere and face around the eye.

25. **Rosecomb with a single leader**. The rosecomb is a dominant gene, as with the leader however a rising leader is a recessive gene. The workings or the small rounded bumps on the top of the comb are created by a dominant gene that is reported to decrease the fertility of the birds. (Carefoot) and. a smooth comb is recessive.

26. Females can have a comb that is small and flat against the head, a larger comb that stands out looks better (a dominant gene).
27. **Wattles** “well rounded”, this is prominent on males and a feature of Sebrights. It is probably a recessive trait. Females will only have prominent rounded wattles if they a prominent comb.

![Wattles example](image1)

She has a good comb and wattles but her neck feathers are pointed

![Wattles example](image2)

His comb needs much improvement but the wattles are well rounded.

28. **Ear lobes** are to be flat and unfolded, that is difficult feature to breed. Colour is not a issue in the standard but white lobes are frowned upon.

![Ear lobes example](image3)

The bird on the left has a deep body and is heavy, the one on the right is lighter
29. **Weight** Many Sebrights are too heavy (males 825g and females 510g). It is difficult to produce lighter offspring from heavy females. The heavy body is a recessive gene and a small bird is needed to have small offspring. The small size maybe a reason for low fertility, hence there is a leaning towards the larger birds to breed from.

LACING

Of what’s left select the best for lacing, as this is the most visible feature of Sebrights.

30. It takes **3 mouls to see the true lacing** on Sebrights, but a fairly good indication can be seen on the second lot of feathers. This makes it difficult to sort the young birds out until they are nearly fully developed.

31. For some reason it is much easier to breed birds with good lacing and combs on birds that have a red comb, but it usually takes a couple of extra years and many more chickens to achieve the same on mulberry comb birds.

32. **Good lacing on the breast** usually leads to good lacing for the whole bird.

33. Look for even, sharply defined lacing around the edge of every feather and even from feather to feather if it is available.

34. The best way to get medium lacing is to use both male and female with medium width lacing, however a fine laced bird mated with a broad laced bird can produce medium lacing. The broad lacing is recessive.

35. **Fine laced birds tend to have longer legs.** (a recessive feature)

36. Avoid **crescent tipped feathers** that have broad lacing at the tip of the feather and thin lacing on the sides of the feather. Caused by a recessive gene.
The crescent tipped feathers are mainly on the breast.

Frosted feathers with an outer edge of the background colour.

These feathers at the back of the neck are almond shaped, without any sign of frost.

37. Eliminate **lacing that has a rim of the background colour** on the outside of the lacing (on the outer edge of the feather) some call this double lacing or frosting but in truth it is a form of pencilling and caused by a gene missing.

38. The **almond shaped feathers** “is desired” “but never pointed” The neck feathers on most birds are pointed and pencilled (frosted) To eliminate the ‘V’ shaped ends select one partner in a mating with some of the feathers the right shape and a few generations later they will extend to the whole of the flock of the Sebrights. I think that the almond shape is a dominate gene.

39. Lack of lacing on the wing butt is caused by a recessive gene.

40. When the **under colour is dark slate the lacing is better**, but this, is like good lacing, is difficult to achieve. The dark under colour helps to eliminate feather shafts showing out on gold birds and is probably recessive and difficult to remove. Dark down is somehow associated with the mulberry comb colouring.

41. Use males that have a **good green sheen on the lacing**.

42. Try to eliminate **smuttiness on the body of the feathers** particularly the tail and the secondary wing feathers where it is highly visible.

43. **Narrow feathers on the back** which is recessive can be bred out by mating with a bird with broader feathers; it may take a few generations to be successful.
44. The **crimping of the barbs** on the last three primary flight feathers usually on the left hand side and they seem to be slower growing. This is caused by a dominant gene and if ignored can spread throughout a flock. This occurs in other breeds as well.

These cramped primaries are laced only on the inside edge

45. **Lacing on the primary feathers** usually incomplete because it is missing on the outer edge. It is possible to obtain as Silver laced Wyandottes have a similar problem I have only seen one breeder that had birds with fully laced primaries. It seems as though there is a missing gene or a modifying gene in action. In all my years breeding Sebrights I have never had fully laced primary feathers on a bird but I have seen photos of birds (about 1939) with flight feathers that are laced.

46. It is difficult to have laced feathers covering the breast bone.

47. A black headed bird is caused by heavy lacing, where as white head and ‘bishops’ collars are caused by lack of lacing or frosting that has a edge of background colour on the outer edge of the feathers. What is needed is a “Goldie Locks” job lacing all over, good luck with it.

48. Fabric stain remover works well at removing stains from the flight feathers of silver birds for showing.

COMBS

The crowning glory of an outstanding bird.

49. A rose comb and the workings on the top are produced by dominate genes. Whereas recessive genes produce the following

(a) a comb with a single leader,
(b) a comb rising at the back of the head,
(c) an ingrown leader,
(d) a straight comb.
(e) smooth top surface.
(f) a hollow on the top surface.

50. Birds raised in warmer conditions tend to have larger combs.

51. The shape of a **female’s comb is important** when selecting a mating pair as it affects the male progeny’s combs.

52. **A red comb male** cannot produce a mulberry comb male, no matter how purple the hen’s comb (some sort of recessive gene), but can produce mulberry combed females form a mulberry combed female because some of the comb colour is on a sex gene and unlike people male birds have two active sex genes and the females have only one. There is little point raising red faced chicks as nobody wants them as adults so they are not worth their keep. I usually cull them at hatching.

53. All of the rules for **breeding mulberry combs** are an enigma to me. Co-dominance probably exists and at least two genes are involved. There appears to be dark purple, median purple, light purple or dark red, and red, and all these shades can be produced from a pair with purple combs. Red combs seem to be recessive. The two or more genes from each of the parents interact together to give the various shades from red to purple but it in difficult to breed a dark purple comb on a male, one can always hope. Maybe it is the increase of blood flow to the comb in the breeding season or as the birds mature causes the mulberry comb look redder. A male with light mulberry will have a recessive red comb gene and when mated to a hen with the recessive red gene will produce red combed birds on a quarter of the chickens hatched which should be culled at hatching, because nobody wants them. Try to select a dark purple face around the eye of the female; it seems to indicate carrying the dark purple gene. The red gene will colour the base of the feet light coloured, and also make the eyes and face and skin lighter where as the mulberry genes colour the skin the feet and flesh a dark blue. The skin on the breast of a light mulberry combed male can be light where as on a dark faced bird the breast is dark blue.

54. The Chinese place a high value on the dark flesh of mulberry birds, and they are a good source for disposing culls.

55. For some reason it is much easier to breed birds with good lacing on birds that have a red comb, but it usually takes a couple of extra years and many more chickens to achieve the same on mulberry comb birds.

56. The mulberry comb on males can be breed from Silkies, it only takes about 10 years or so to produce Sebrights with lacing and a comb with a single leader without a hollow. Using **birchen OEG bantams** is a quicker and slicker way to get there. Use birchen so that the tail feathers will be laced.
BREEDING THE COLOURS

57. As well as Silver and Gold there exists a **cream colour** of Sebrights that will breed true, they have been around for a very long time but are not accepted in the standards as a pure Sebrights colour. Similarly, there is a dark tan which is not gold and this also is not accepted. The gold needs to be an even golden bay on all of the feathers with no mealiness of light and dark areas.

58. **Gold** is recessive to cream and cream is recessive to silver.

59. A Gold male will only produce gold pullets irrespective if the hens are silver, cream or gold. Similarly with a pure silver cock will only produce silver pullets and silver cockerels that are carrying gold when the female is gold.

60. A Silver cock can and when it does carry gold as a recessive gene, it will produce either gold or silver pullets in a 50/50 ratio. Some breeders will not breed with them.

61. Gold cocks cannot carry silver!

62. A gold male over a cream female produces gold females and cream males carrying gold.

63. Most of the depth of colour comes from the male. With silvers, be sure to select one that does not have transparent silver that allows the lacing of the underneath feathers to be seen through the top feathers, if they exists.

64. It is more challenging to breed good gold birds. The biggest challenge is to eliminate the light shafts of the feathers Chris Parker may have done it! I don’t know how.

65. An old chook breeder from a line of chook breeders once said to me that if you keep Sebrights you need to keep both gold and silver to keep up the vigour of the breed by crossing the colours

MATING HINTS

66. Where possible avoid mating birds with the same fault together. It’s all very well to say ‘don’t make up breeding pens with the same fault’ but you may not have any choice in the matter with the stock in hand so an understanding of what’s recessive makes for realistic expectations. Besides, to obtain an improvement of any breeding, requires a production of about 25 to 32 young birds to be bred to get one good’n. With a bit of luck you may get a useful sport.
67. It may take several generations of breeding (like 10 to 20 years) to get a combination that resembles anything like all the good features on one bird. A short cut is to buy the best birds that you can find at almost any price! It will be cheaper than breeding a good’n but not as much fun. Don’t mix the breeding line with an out cross unless a specific aim is being pursued. Always try to get a cock and pullet when importing so that you have all the genes. The two times that I have imported Sebright stock it has not caused any dramas. It appears that most Sebrights in Australia are related. However when ever imports were made with barnevelders all sorts of things went wrong with their lacing, good thing I kept the imports separate. So where possible have faith and work with your line of birds.

68. If possible work on one fault at a time, for example several years ago I eliminated all the birds that did not have dark eyes, now I have only Sebrights with dark eyes. At the present time, I am working on other faults one at a time. e.g purple combs.

69. Sometimes the only solution is to import stock with the desired gene and slowly introduce the line into the stock, for example a short back. There is a remote possibility of a sport occurs that has a short back, (Very remote) and if your stock has no short backs an import is necessary, same goes for the cushion feathers to the tail.

70. Don’t be afraid to mate closely related birds like mother/son, father/daughter, sister/brother, try not move out of a blood line. Birds are not as precious as people who cannot be culled when some recessive genetic fault occurs when close inbreeding is practiced. Only after 20 years will fertility problems occur. Only out breed when a dire need occurs like a particular trait such as a short back, or infertile cocks or no eggs from the hens then where possible use related birds. That’s a good reason to have a friend or several friends to breed your line or a similar line and you breed their line so don’t hoard all your good birds.

71. Leg colour is caused by genes on the dermis and the epidermis. The over laying epidermis dilutes but does not eliminate the dermis colour. I have only seen blue legs with blue feet on mulberry combed birds caused by the dermis being black and the epidermis being without colour. Birds with red combs have blue legs with light coloured feet pads.

72. Cow hock legs is a fault caused by a recessive gene and is difficult to eliminate as they can turn up after several generations because you cannot see the birds that are carriers when selecting breeding stock. It can be detected at 4 weeks. Short backed birds seem to be more likely to have cow hocked legs is there a connection?.
BROODING HINTS

73. When brooding keep the very young Sebrights separate from other breeds because they are soft and are easily knocked about by the stronger chicks of other breeds. So separate them from other birds except for Rosecombs. Raise a maximum of 25 birds together. When hatching only 4 or 5 a week then brooding several weeks together seems to be ok, just keep removing the oldest ones after 4 weeks they will be vigorous enough to raise with other breeds.

74. Very young Sebright chickens must not be left for long periods without a heater as they have little capacity to keep themselves warm and will promptly die. So for the first week check the heater last thing at night and throw a feed bag over the brooder. If using globes for a heat source use a new globe with each new batch. Limit the number of chicks to 20 at max 25 to a 40W globe. Pick the smallest chick from the
previous hatch to educate the new chicks to feeding and drinking. If not available then dip several of the new chicks beak into the water, and spread food at the edge of the heater.

75. If a chick escapes from a brooder they will not beep when lost, but they will sit quietly huddled up and die from cold and starvation. That’s where Mollie the collie becomes very handy by pointing them out to me, otherwise all I will find is a dried up corpse.

76. Feed the chicks medicated 22% protein turkey and meat starter crumbles.

77. All Sebright chickens whether raised in a brooder or by a hen will need their bums wiped at 5 days and 10 days old to remove the manure that cakes up over the vent, also remove any manure knobs removed from their feet after about 3 and 6 weeks to prevent toe nails being garrotted off.

78. A pen that is 600d x 1200w x 750h with a perch can happily hold up to four breeding adults, or raise 8 young chicks. Too many birds on damp litter leads to the litter becoming compacted and unable to absorb droppings. The pen can be made using a double show pen front with wires at 25mm centres that makes them fox proof. Note the 140mm board at bottom of the pens in a attempt to keep the litter in the pens. The fan is to circulate air on days over 30°C.

As the chicks grow they become comfortable looking people in the eye

BOOKS OF INTEREST

79. Gold and Silver Sebright Bantams by R WISEMAN-CUNNINGHAM
 The Feathered World 1905

80. Sebright Bantams by Roy Van Heosen, Editor
 Bantam Supply House Franklinville New York 1939
81. The Sebright Manual
Sebright Club of America 1962

82. Golden and Silver Sebright Bantams by Bill Holland
American Bantam Association 1980

83. Creative Poultry Breeding By Clive Carefoot 1986 there was only 500 copies printed.

84. SEBRIGHT BANTAMS by Joseph Batty second edition 2007

85. The Sebright Club Year Book 1872 – 2012 by Chris Parker editor 2012

86. Genetics of Chicken Colours by Sigrid Van Dort & David Hancox 2008
available from David Hancox 29 Cundagai Rd Cooyamunda 2590 ph 02 6942 2152

87. Poultry breeding and genetics edited by R. D. Crawford Elsevier 1990
1123 pages of very good information my copy cost $183 about 15 years ago.

Maximus Troy Publications PO Box 2727 Ramona California 92065

This beaut bird produced very few young
These birds were prolific breeders!

THAT’S ALL I KNOW

The then US Defence Secretary Donald Rumsfeld once said in 2002,

"Reports that say that something hasn't happened, are always interesting to me because as we know, there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns the ones we don't know we don't know."

Rumsfeld was lampooned mercilessly for that comment.

These notes were written with the help of Stewart Robinson

Every year I find something new to add to these notes just as I have found something else to know. The challenges of breeding Sebrights will never cease. It’s all very well to know the rules but it’s an entirely a different matter to get it all on one bird that can reproduce.

The allusive perfect bird is yet to be bred, but the faulty Sebrights that I have are good to have around, they sort of give me a reason to stick about, 90% is good enough for me maybe I’ll get 100% one day.

Smart_deceptions@iprimus.com.au